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Abstract

Amodel for torsional vibration of slender thin-walled tubes with constrained-layer dampers is developed.
Assuming that the deformation obeys the Saint-Venant hypotheses, we develop a model suitable for
prediction of the complex stiffness per unit length in closed, thin-walled tubes whose walls consist of
laminated elastic and viscoelastic layers, and formulate a boundary-value problem for the warping
deformations arising under Saint-Venant torsion. For some basic cross-sectional shapes, we solve the
warping problem and thence obtain closed-form expressions for the complex stiffness per unit length. Next,
we provide some guidelines for the design of tubes with high damping in torsion. Finally, we compare the
damping predicted by the model to measurements performed on a simple structure.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the response of an elastic–viscoelastic beam to a harmonically varying twisting
moment applied at its end. If the frequency of motion is low enough that the rotary inertia of the
beam can be neglected, the internal twisting moment does not vary from section to section, and
hence the strains developed in the beam are independent of the lengthwise co-ordinate. A slender
beam therefore takes on a constant angle of twist per unit length, and cross-sections distant from
either end of the beam rotate about the longitudinal axis without distortion in their own plane.
But such rotation gives rise to shear stresses which, unless the cross-section is axially symmetric,
cause it to warp in the longitudinal direction. This model for the torsion of slender beams was
first proposed by Saint-Venant in 1855 and is referred to in the literature as ‘‘uniform’’ or
‘‘Saint-Venant’’ torsion.
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Near the ends of the beam, the deformation may violate the premises of the Saint-Venant
theory of torsion in two important ways:

1. Restraint against warping: if an end is restrained against warping—for example, by welding it
to a solid block—the deformation will not be uniform near that end. This effect is well
documented in the elasticity literature and is known in homogeneous beams to be most
significant for sections with large flanges (e.g. [1,2]). It may also cause significant non-
uniformity for elastic–viscoelastic beams because, as we will see subsequently, warping
displacements play an essential role in damping torsional vibration.

2. In-plane distortion: depending on the distribution of stresses on the end of a beam, cross-
sections near that end may deform in their own plane. For homogeneous beams, this
deformation can almost always be neglected, but for elastic–viscoelastic beams we can envision
cases where it is of primary importance. Consider for example a beam made up of a circular
elastic core and concentric viscoelastic and elastic layers. Suppose we exert a moment at one
end of this beam on only the outer elastic layer. Near this end, the outer layer will undergo a
larger rotation than the circular core, and this difference in rotation induces large strains in the
viscoelastic layer. This mechanism of damping was studied by Chandrasekharan and Ghosh [3]
and Batra and Yu [4] for straight beams and Nandakishore and Ghosh [5] for coil springs. To
the best of the authors’ knowledge, these are the only published works on non-uniform torsion
of elastic–viscoelastic beams.

It is difficult to form a general measure of the importance of warping restraints and in-plane
distortion; their effects must be evaluated on a case-by-case basis taking detailed account of the
boundary conditions. In the present study, we will work under the assumptions of Saint-Venant
torsion.
Upon review of the literature we find only a handful of studies of Saint-Venant torsion of

elastic–viscoelastic beams: Johnson and Woolf [6] examine torsion of a two-layer beam made up
of a thick elastic bar and a thin viscoelastic layer. Starting from the classical formulation given by
Sokolnikoff [7] for the stress distribution in a compound beam, they derive a perturbation
solution valid when the viscoelastic layer is much more compliant than the elastic layer. From a
similar formulation, Dewa [8] generates numerical solutions for three-layer elastic–viscoelastic
beams made up of solid rectangular laminae. Other researchers have studied bending and torsion
of laminated rectangular beams composed of anisotropic laminae (e.g. [9,10]).
Closed, thin-walled tubes have high flexural and torsional stiffnesses for a given mass, and

therefore find wide application in machine and aerospace structures. Demoret [11] studied round
tubes with slender constraining layers wrapped helically around their circumference in order to
damp both torsional and bending vibration. In the present work, we develop a general model for
torsion of closed, thin-walled, elastic–viscoelastic tubes with constrained viscoelastic layers that
extend along the length of the tube. Assuming that the deformation obeys the Saint-Venant
assumptions and neglecting the rotary inertia of the compound tube, we develop a boundary-
value problem for the warping displacements of the tube wall. Next, for the specific cases of
circular and rectangular tubes, we solve the warping problem and obtain expressions for the
torsional complex stiffness per unit length.
Finally, we present measurements of the resonant frequencies and loss factors for torsional

vibration of a square steel tube with constrained viscoelastic layers. The shear modulus and loss
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factor of the viscoelastic material are varied by changing the temperature of the specimen while
conducting a series of measurements. The measured values are in close agreement with those
predicted by the model.

2. Modelling and analysis

Because we neglect rotary inertia in our analysis, harmonic motion is governed in the frequency
domain by equations of the same form as those governing static deformation. We note, however,
that the following derivations are carried out in the frequency domain and that the deformations,
stresses, and strains are harmonically varying quantities whose magnitude and phase are
represented by complex variables. Consider, as shown in Fig. 1, a closed elastic tube of modulus
G1 to which is attached a thin viscoelastic layer of modulus G2 backed by an elastic constraining
layer of modulus G3: The thin-walled tube forms a single closed loop in the yz plane, and its shape
is given by the vector RðsÞ normalized so that dR=ds ¼ es:

2.1. Modelling assumptions

According to the Saint-Venant model, imposition of a twisting moment develops shear stresses
in the yz plane. In the absence of laminated viscoelastic layers these stresses run parallel to the
tube wall, and the shear flow ttxs is constant. In the present case, the shear flow t1ðtxsÞ1 is constant
only on that portion of the tube wall without lamination. On the laminated region, some stress is
transmitted through the viscoelastic layer to the constraining layer, and the total shear flow
t1ðtxsÞ1 þ t2ðtxsÞ2 þ t3ðtxsÞ3 must be constant.
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Fig. 1. Cross-section of a thin-walled tube consisting of a closed elastic tube of modulus G1 and thickness t1ðsÞ;
a viscoelastic layer of (complex) modulus G2 and thickness t2ðsÞ; and a constraining layer of modulus G3 and

thickness t3ðsÞ:
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It follows immediately from the Saint-Venant assumptions that the only non-zero stresses are
the shear stresses txs in the tangential direction and txn in the normal direction. So the differential
equation of equilibrium in the ith layer is given by

@ðtxnÞi
@n

þ
@ðtxsÞi
@s

¼ 0: ð1Þ

Rather than attack this equation directly, we introduce the following modelling assumptions:

1. The viscoelastic material is far more compliant than the elastic layers and can be modelled as a
frequency-independent hysteretic material with a complex stiffness (e.g. [12]).

2. At the interface between a viscoelastic layer and an elastic layer, the displacements in the
tangential direction—and hence the shear strains in the tangential direction—must match. We
therefore take the shear strain ðgxsÞ2 in the viscoelastic layers to be of the same order as the
shear strains ðgxsÞ1 and ðgxsÞ3 in the adjoining elastic layers. But the viscoelastic layer is far more
compliant than either of the elastic layers, and therefore the shear stress ðtxsÞ2 in the tangential
direction in the viscoelastic layer is negligible in comparison to ðtxsÞ1 and ðtxsÞ3 in the elastic
layers.

3. The shear stress ðtxnÞ2 in the normal direction in the viscoelastic layer is of the same order as
ðtxnÞ1 and ðtxnÞ3 in the elastic layers, but the viscoelastic layer is far more compliant. Hence the
shear strains ðgxnÞ1 and ðgxnÞ3 in the elastic layers can be neglected in comparison to ðgxnÞ2 in the
viscoelastic layer.

4. The shear stresses in the normal direction must vanish at the inner and outer walls of the tube,
so it follows from Eq. (1) that, in the first elastic layer, ðtxnÞ1BðtxsÞ1t1=R0; where R0 is a
characteristic length in the tangential direction and t1 is the thickness of the inner elastic layer.
Thus, for a thin-walled tube, we have ðtxnÞ15ðtxsÞ1: Likewise, in the constraining layer we have
ðtxnÞ35ðtxsÞ3:

5. In the viscoelastic layer, the shear stress ðtxnÞ2 in the normal direction is of the same order as
ðtxnÞ1 and ðtxnÞ3 in the elastic layers and hence (from item 3 above) is much smaller than ðtxsÞ1
or ðtxsÞ3:

6. The variation of ðgxnÞ2 through the thickness of the viscoelastic layer and the variation of ðtxsÞ1
and ðtxsÞ3 through the thickness of the elastic layers can be neglected.

Summary: The shear stress in the direction tangent to the tube wall can be neglected
in the viscoelastic layer but not in the elastic layers. Conversely, the shear strain in the
direction normal to the tube wall can be neglected in the elastic layers but not in the visco-
elastic layer. The shear stress in the tangential direction in the elastic layers and the shear strain in
the normal direction in the viscoelastic layer can be treated as constants across the thickness of
each layer. Moreover, the shear stresses are much larger in the tangential than in the normal
direction.

2.2. Formulation

Consider a tube subject to an angle of twist per unit length of magnitude y: Because the shear
strains in the normal direction are negligible in the elastic layers, the warping displacements, u1 in
the tube wall and u3 in the constraining layer, are functions of only the tangential co-ordinate s:

ARTICLE IN PRESS

S.A. Nayfeh, K.K. Varanasi / Journal of Sound and Vibration 278 (2004) 825–846828



Therefore, making use of the Saint-Venant assumptions, the displacement of a point on the tube
wall can be written as

ðDRÞi ¼ uiðsÞex þ yxex � RðsÞ; ð2Þ

where x is the lengthwise co-ordinate and ex is the unit vector pointing along the axis of the
tube.
As was argued in the foregoing, a twisting moment is resisted primarily by shear stresses in the

tangential direction in the elastic layers. Making use of the deformation given in Eq. (2), we can
write the corresponding shear strain in the tube wall as

ðgxsÞ1 ¼
du1

ds
þ

d

dx
½ðDRÞ1 � es� ¼

du1

ds
þ yR � en ð3Þ

and, likewise, in the constraining layer,

ðgxsÞ3 ¼
du3

ds
þ

d

dx
½ðDRÞ3 � es� ¼

du3

ds
þ yR � en: ð4Þ

In the viscoelastic layer, we are concerned with the shear strain in the normal direction; assuming
it is constant through the thickness of the viscoelastic layer, we write it in terms of the warping
displacements as

ðgxnÞ2 ¼
u3 	 u1

t2
; ð5Þ

where t2 is the thickness of the viscoelastic layer.
In formulating the conditions for equilibrium, we examine first those portions of the tube wall

not covered by a constrained viscoelastic layer. Consider a slice ds of this homogeneous wall. We
have already argued that the only significant stress acting upon it is the shear stress in the
direction tangent to the wall, and that this stress can be taken to be uniform through the thickness
of the wall. Denoting this stress by ð#txsÞ1 and summing forces in the x direction, we write the
equation of equilibrium

d

ds
½t1ð#txsÞ1� ¼ 0 ð6Þ

from which we see that the shear flow t1ð#txsÞ1 is constant on homogeneous segments of the tube
wall.
On portions of the tube wall covered by a constrained viscoelastic layer, we must also consider

the resultant of the normal stress transmitted through the viscoelastic layer. Hence, the force
balance of the tube wall is of the form

d

ds
½t1ðtxsÞ1� þ ðtxnÞ2 ¼ 0: ð7Þ

Similarly, for the constraining layer we have

d

ds
½t3ðtxsÞ3� 	 ðtxnÞ2 ¼ 0: ð8Þ
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If we combine Eqs. (7) and (8), we see that the total shear flow t1ðtxsÞ1 þ t3ðtxsÞ3 is constant on
laminated segments of the tube wall. (Recall that t2ðtxsÞ2 is negligible.)
Now introducing the shear moduli G1;G2; and G3 for the tube wall, viscoelastic, and

constraining layers, respectively, we can use the shear strains given in Eqs. (3)–(5) to write the
equations of equilibrium (6)–(8) in terms of the warping displacements. On homogeneous
segments of the wall, we obtain

d

ds
G1t1

d #u1

ds
þ yR � en

� �� �
¼ 0; ð9Þ

where we have introduced the notation #u1 for the warping displacement on a homogeneous
segment of the wall. On laminated segments of the wall, we obtain

d

ds
G1t1

du1

ds
þ yR � en

� �� �
þ

G2

t2
ðu3 	 u1Þ ¼ 0 ð10Þ

for the tube wall and

d

ds
G3t3

du3

ds
þ yR � en

� �� �
	

G2

t2
ðu3 	 u1Þ ¼ 0 ð11Þ

for the constraining layer.
The warping displacements are governed by Eq. (9) on homogeneous regions of the tube wall

and by Eqs. (10) and (11) on laminated regions of the tube wall. Our task is to solve these
equations subject to the following conditions:

1. The shear stress ðtxsÞ3 must vanish at the ends of a constraining layer. In terms of the warping
displacement, this condition takes the form

du3

ds
þ yR � en ¼ 0: ð12Þ

2. At junctions between laminated and homogeneous segments of the wall, the stresses in the
tangential direction as well as the warping displacements must match; that is, u1 ¼ #u1 and
ðtxsÞ1 ¼ ð#txsÞ1 at the ends of a constraining layer.

3. The total moment is obtained by integrating the shear flow over the periphery of the
section, and since the total shear flow is constant, we can evaluate it on a homogeneous segment
of the wall where it is given by t1ð#txsÞ1: Integrating around the perimeter of the section, we
obtain

Mt ¼
I

ðt1ð#txsÞ1ÞR � en ds ¼ 2A½t1ð#txsÞ1�; ð13Þ

which, when combined with Eq. (3), yields

Mt ¼ 2A G1t1
d #u1

ds
þ yR � en

� �� �
; ð14Þ
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where A is the area enclosed by the tube wall. The quantity in brackets can be evaluated
anywhere on the homogeneous segments of the wall.

In the following sections, we use this formulation to derive expressions for the complex
stiffness for some specific cross-sections. We begin by considering a round tube with a single
laminated viscoelastic segment, and then generalize the results to round tubes with multiple
symmetric laminated regions. Finally, we obtain solutions for rectangular tubes with all four faces
laminated.

2.3. Circular tube with a constrained viscoelastic layer

Consider the cross-section shown in Fig. 2, which consists of a circular tube of radius r and
constant wall thickness t1 to which is laminated a viscoelastic layer of thickness t2 backed by a
constraining layer of thickness t3:
We set the origin of the tangential co-ordinate system at the center of the constraining layer so

that the ends of the constraining layer are at s ¼ 7a: We also find it convenient to develop
solutions in terms of the parameter b; which at present we set equal to pr so that s ¼ 7b is the
location on the tube wall directly opposite the midpoint of the constrained viscoelastic layer.

2.3.1. Warping displacements

For a circular tube with constant wall thickness, Eqs. (10) and (11) governing the warping
displacements u1 and u3 on laminated regions of the tube reduce to

G1t1
d2u1

ds2
þ

G2

t2
ðu3 	 u1Þ ¼ 0; ð15Þ

G3t3
d2u3

ds2
	

G2

t2
ðu3 	 u1Þ ¼ 0: ð16Þ

ARTICLE IN PRESS

Fig. 2. Cross-section of a circular tube with a single constrained viscoelastic layer: the tube wall has shear modulus G1;
thickness t1; and perimeter 2b: The constrained viscoelastic layer extends over a length 2a of the tube wall and consists

of a viscoelastic layer with complex modulus G2 and thickness t2 backed by an elastic layer with modulus G3 and

thickness t3:
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The general solution of this system of homogeneous equations can be written in the form

u1

u3

" #
¼ ðc1 þ c2sÞ

1

1

" #
þ c3 sinh

gts

a
þ c4 cosh

gts

a

� 	 1

k

" #
; ð17Þ

where k ¼ 	G1t1=G3t3; the ci are constants to be determined from the matching conditions, and
the eigenvalue gt=a is given by

gt

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

t2

G1t1 þ G3t3

G1t1G3t3

� �
a

b

� 	s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

t2

1

G1t1Y

� �
a

b

� 	s
; ð18Þ

where

Y ¼
G3t3

G1t1 þ G3t3

a

b

� 	
: ð19Þ

Examining the form of gt=a given above, we see that it is a measure of the stiffness of the
viscoelastic layer relative to that of the elastic layers. It plays a role similar to the so-called
coupling parameter that characterizes constrained-layer damping of bending vibration (e.g. [13]).
Similarly, if k0 is the torsional stiffness of the tube without constraining layers and kN is the
torsional stiffness of the tube with the constraining layers rigidly attached, the dimensionless
parameter Y can be written as

Y ¼
kN 	 k0

kN

: ð20Þ

It plays the same role as the so-called stiffness or geometric parameter in bending vibration. As we
shall see, the dimensionless parameters gt and Y fully determine the complex stiffness of the
composite tube.
On regions of the tube without lamination, the warping displacement #u1 is governed by Eq. (9),

which for a circular tube with constant wall thickness reduces to

G1t1
d2 #u1

ds2
¼ 0; ð21Þ

whose general solution we write in the form

#u1 ¼ c5s þ c6; ð22Þ

where c5 and c6 are constants. Whereas an axially symmetric tube does not warp, we see from
the warping displacements given by Eqs. (22) and (17) that the addition of the constrained
viscoelastic layer causes the tube wall to warp and to take on some curvature on regions with
lamination.
We are not concerned here with rigid-body motions of the tube, and hence set them to zero and

make use of symmetry arguments to conveniently determine the constants c1 to c6: The warping
displacements go to zero on the axis of symmetry; thus, at s ¼ 0 we have

u1ð0Þ ¼ u3ð0Þ ¼ 0 ð23Þ

and at s ¼ b ¼ pr we have

#u1ðbÞ ¼ 0: ð24Þ
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At s ¼ a; the shear stress in the constraining layer must vanish. This condition, set forth in
Eq. (12), reduces to

du3ðaÞ
ds

þ ry ¼ 0 ð25Þ

for a circular tube. In the tube wall, the displacements must match:

u1ðaÞ ¼ #u1ðaÞ: ð26Þ

The shear stresses must also match. Using Eq. (3), we write

du1ðaÞ
ds

¼
d #u1ðaÞ
ds

: ð27Þ

The six matching conditions given in Eqs. (23)–(27) determine the constants c1 through c6 in terms
of the angle of twist per unit length y:
Substituting the warping displacements (22) and (17) into the matching conditions (23)–(27),

and solving for the ci; we write the warping displacements in the form

#u1 ¼
bryYl
1	 lY

s

b
	 1

� 	
ð28Þ

and

u1

u3

" #
¼

bryY

1	 Yl
sinh gts=a

gt cosh gt

1

k

" #
þ l	

b

a

� �
s

b

� 	 1

1

" #( )
; ð29Þ

where gt is defined in Eq. (18), Y is defined in Eq. (19), and

l ¼ 1	
tanh gt

gt

: ð30Þ

We can now plot the warping displacements as shown in Fig. 3, where we illustrate the effect of
increasing gt for fixed Y and a=b: For small gt; the tube wall and the constraining layer are nearly
decoupled: the tube wall warps only slightly and the constraining layer suffers little shear
deformation as it undergoes a large rigid-body rotation. As gt is increased, the coupling becomes
stronger, and we see that for large gt the tube wall is strongly warped. We expect that the damping
will be highest at intermediate values of gt where the coupling is strong enough to induce
significant stress into the constraining layer, but weak enough to allow significant strain.

2.3.2. Complex stiffness
Substituting the expression for #u1 given by Eq. (28) into the integral condition for the total

moment on the tube set forth in Eq. (14), we obtain

ktð1þ jZt sgnoÞ ¼
Mt

y
P

4A2G1t1

� �
¼

1

1	 lY
; ð31Þ

where kt is the normalized static stiffness of the tube and Zt is its loss factor. It is necessary to
multiply the loss factor Zt by sgno ¼ o=joj to avoid fallacious results in the inverse Fourier
transform [12,14]. The parameter Y ; as we have seen, depends only on the material properties and
dimensions of the tube wall and constraining layer, whereas l is a function of gt; which is
a measure of the stiffness of the viscoelastic layer. Modelling the viscoelastic material as
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frequency-independent hysteretic, we write its complex shear modulus as G2 ¼ Gvð1þ jZv sgnoÞ
and rewrite Eq. (18) as

gt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ jZv sgnoÞ

a2Gv

t2

1

G1t1Y

� �
a

b

� 	s
: ð32Þ

The dependence of l on gt is given in Eq. (30), from which we see that l approaches zero for small
jgtj and unity for large jgtj: At intermediate magnitudes of complex gt; l takes on complex values,
yielding non-zero Zt:
In Fig. 4, we have fixed Zv ¼ 1 and plotted the stiffness and loss factor as a function of the real

part of gt: As expected, the damping is maximized at intermediate magnitudes of gt: Since Y and l
appear as products in Eq. (31) for the torsional stiffness, the damping potential can be improved
by increasing Y :

2.4. Circular tube with multiple constrained viscoelastic layers

In this section, we consider torsion of a thin-walled tube with multiple constrained viscoelastic
layers arranged symmetrically on the tube wall. As shown in Fig. 5, each of the N identical
constrained viscoelastic layers extends over a length 2a of the tube wall of total perimeter 2Nb:
The equations of equilibrium take on exactly the same form as they did for a tube with a single

constraining layer of length 2a on a tube of perimeter 2b; so Eqs. (15), (16), and (21) governing the
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Fig. 3. Static normalized warping displacements u1=bry (solid line) and u3=bry (dashed line) in a circular tube with a

single constrained viscoelastic layer; a=b ¼ 0:5; Y ¼ 0:2; k ¼ 1:5; and (a) gt ¼ 1; (b) gt ¼ 3; and (c) gt ¼ 5:
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warping displacements are still valid for this case. The boundary conditions matching
displacements and stresses at the ends of the constraining layers are unchanged, and we can
again argue from symmetry that the warping displacements must vanish at s ¼ 0 and integer
multiples of b: So we can also reuse the boundary conditions given in Eqs. (23)–(27). Thus the
solutions for the warping displacements on 	bpspb are independent of the number of
constrained viscoelastic layers arranged around the section, and the warping displacements on
	NbpspNb can be constructed simply by stringing the displacements on 	bpspb together as
shown in Fig. 6.
The torsional stiffness of a composite tube with multiple constrained viscoelastic layers can be

derived by the same method used for a tube with a single constrained viscoelastic layer, and we
find that the result given in Eq. (31) is unchanged. Thus, for identical values of Y and l; the same
complex torsional stiffness is obtained for any number of symmetrically arranged constrained
viscoelastic layers.
This leads to some simple laws for scaling design parameters. Suppose for example that we have

found a design using a single constrained viscoelastic layer which yields a favorable complex
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Fig. 4. (a) Static stiffness and (b) loss factor, plotted against the real part of gt for a circular tube with a single

constrained viscoelastic layer with Zv ¼ 1 and Y ¼ 0:25 (solid), 0.50 (long dashes), and 0.67 (short dashes).
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stiffness but requires the use of an unreasonably thick viscoelastic layer. If we split the
constraining layer into four segments and hold a=b; t1; t3; and the material properties constant, Y

does not change. Then from Eq. (18), we see that to obtain the same value of gt (and therefore the
same value of l) we must scale the thickness t2 of the viscoelastic layer with a2: Thus, in our
example, by cutting the constraining layer into four segments, we can reduce the thickness of the
viscoelastic layer by a factor of 16 without changing the complex stiffness.

2.5. Rectangular tubes

Consider the rectangular tube with constrained viscoelastic layers shown in Fig. 7. The faces of
the tube that extend in the y direction have thickness t1; shear modulus G1; and length 2h: These
faces are covered completely by viscoelastic layers of thickness t2 and shear modulus G2; which in
turn are covered by elastic layers of thickness t3 and modulus G3: The faces of the tube that extend
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Fig. 5. Cross-section of a circular tube with three constrained viscoelastic layers arranged symmetrically on its

perimeter: the tube wall has modulus G1; thickness t1; and perimeter 6b: Each of the constrained viscoelastic layers

extends over a length 2a of the tube wall, and consists of a viscoelastic layer of complex modulus G2 and thickness t2
and elastic layer of modulus G3 and thickness t3:

Fig. 6. Static normalized warping displacements u1=bry (solid line) and u3=bry (dashed line) in a circular tube with three

constrained viscoelastic layers arranged symmetrically on the tube wall; a=b ¼ 0:5; Y ¼ 0:2; k ¼ 1:5; and gt ¼ 3:
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in the z direction have a similar layup, but possibly different dimensions and material properties.
These are denoted in the like manner, but with the addition of a hat (e.g., #t1; #G1).

2.5.1. Warping displacements
Examining Eqs. (10) and (11), we note that the quantity R � en is simply the normal distance

from the origin to the face of the tube, and hence its derivative vanishes along any face of the tube.
In the corners of the tube, the normal distance changes rapidly with s; but even large strains on
such a localized region cannot lead to large warping deflections, and we can safely ignore the
corner effects when solving for the overall warping deflections in the tube.
On the segment of the tube from y ¼ 	h to h; Eqs. (10) and (11) governing the warping

displacements u1ðyÞ and u3ðyÞ become

G1t1
d2u1

dy2
þ

G2

t2
ðu3 	 u1Þ ¼ 0 ð33Þ

and

G3t3
d2u3

dy2
	

G2

t2
ðu3 	 u1Þ ¼ 0; ð34Þ

whose general solution we denote

u1

u3

" #
¼ ðc1 þ c2yÞ

1

1

" #
þ c3 sinh

gty

h
þ c4 cosh

gty

h

� 	 1

k

" #
; ð35Þ

where k ¼ 	G1t1=G3t3 and, in agreement with the results for a round tube with a ¼ b given in
Eqs. (18) and (19),

gt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

t2

h2

G1t1Y

� �s
ð36Þ
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Fig. 7. Cross-section of a rectangular tube: The tube is symmetric about both the y- and z-axis.
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and

Y ¼
G3t3

G1t1 þ G3t3
: ð37Þ

On the segment from z ¼ 	 #h to #h; the warping displacements #u1ðzÞ and #u3ðzÞ are governed by

#G1 #t1
d2 #u1

dz2
þ

#G2

#t2
ð #u3 	 #u1Þ ¼ 0; ð38Þ

#G3 #t3
d2 #u3

dz2
	

#G2

#t2
ð #u3 	 #u1Þ ¼ 0; ð39Þ

whose solution we write as

#u1

#u3

" #
¼ ðc5 þ c6zÞ

1

1

" #
þ c7 sinh

#gtz

#h
þ c8 cosh

#gtz

#h

� �
1

#k

" #
; ð40Þ

where #k ¼ 	 #G1 #t1= #G3 #t3; and #gt and #Y are defined as in Eqs. (36) and (37) but with the addition of
hats on all quantities. The constants c1 through c8 are determined by the imposition of eight
matching conditions.
The cross-section of the tube has two axes of symmetry, so the warping displacements must

vanish at the midpoints of the walls:

u1ð0Þ ¼ u3ð0Þ ¼ 0; ð41Þ

#u1ð0Þ ¼ #u3ð0Þ ¼ 0: ð42Þ

Because of the symmetry, we can restrict our attention to the upper left quadrant of the cross-
section in Fig. 7, and we need to establish matching conditions at only one corner. The
displacement and shear flow in the tube walls must match at a corner. Hence, at y ¼ h and z ¼ #h;
we write

u1ðhÞ ¼ #u1ð #hÞ ð43Þ

and

G1t1
du1ðhÞ
dy

þ y #h
� �

¼ #G1 #t1 	
d #u1ð #hÞ
dz

þ yh

 !
; ð44Þ

where we have made use of the expression for shear strain given in Eq. (3). At the ends of the
constraining layers, the shear stresses must go to zero; in terms of the displacements, this
condition takes the form

du3ðhÞ
dy

þ y #h ¼ 0; ð45Þ

	
d #u3ð #hÞ
dz

þ yh ¼ 0: ð46Þ
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Now using the eight matching conditions (41)–(46) to solve for the ci; we can write the warping
displacements u1ðyÞ and u3ðyÞ in the form

u1

u3

" #
¼

2h #hysY

L
sinh gty=h

gt cosh gt

1

k

" #
	 kþ

L
2sY

� �
1

1

" #
y

h

� 	( )
; ð47Þ

where

L ¼ sð1	 lY Þ þ #sð1	 #l #YÞ ð48Þ

and, as in the case of circular tubes,

l ¼ 1	
tanh gt

gt

and #l ¼ 1	
tanh #gt

#gt

: ð49Þ

The quantities s and #s represent the shear compliances per unit length of the tube wall

s ¼
4h

G1t1
and #s ¼

4 #h

#G1 #t1
; ð50Þ

which are defined so that the torsional stiffness of the tube without constraining layers is 4A2=ðsþ
#sÞ: The warping displacements #u1ðzÞ and #u3ðzÞ take the same form as given in Eq. (47), but with y

replaced by 	z and the hatted and unhatted quantities interchanged.

2.5.2. Torsional stiffness

The resultant moment is given by integrating the shear flow around the periphery. The total
shear flow is constant and most easily evaluated near a corner, where the stress in the constraining
layer is zero and the shear flow is concentrated in the tube wall. Therefore, we rewrite Eq. (14) for
this case as

Mt ¼ 2AG1t1
du1ðhÞ
dy

þ y #h
� �

; ð51Þ

which, upon substitution for u1 from Eq. (47) yields

ktð1þ jZt sgnoÞ ¼
Mt

y
sþ #s
4A2

� �
¼

sþ #s

sð1	 lY Þ þ #sð1	 #l #YÞ
; ð52Þ

where Zt is the loss factor of the compound tube and kt is the ratio of its static stiffness to that of
the tube in the absence of constrained viscoelastic layers.
Comparing the form of the complex stiffness given in Eq. (52) to that in Eq. (31) for a circular

tube, we see that damping treatments on round and rectangular tubes have essentially the same
character, the only difference being a lower degree of symmetry in rectangular tubes. Suppose the
tube is a square with constant wall thickness, so that s ¼ #s: If we restrict our attention to damping
treatments where the constrained viscoelastic layers mounted to each of the four faces of the tube
are identical, we also have Y ¼ #Y and l ¼ #l and the normalized torsional stiffness given in
Eq. (52) becomes

ktð1þ jZt sgnoÞ ¼
1

1	 Yl
; ð53Þ
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in full agreement with Eq. (31) for a fully covered circular tube. If instead we wish to mount
dampers to only two faces of the tube, then we can set #l to zero and obtain

ktð1þ jZt sgnoÞ ¼
1

1	 Yl=2
; ð54Þ

which is in agreement with Eq. (31) for a circular tube with viscoelastic layers on half of its
circumference.

3. Experiment

In this section, we report on experiments conducted on an ‘‘I’’ structure formed by welding
square steel tubes as sketched in Fig. 8. The first torsional mode of vibration of this structure
involves pure torsion of the middle beam and nearly rigid rotation of the end beams. To minimize
damping at the joints, the welds at each end of the tube are continuous through the thickness and
along the perimeter of the tube wall.
To make the experiment—especially the measurement of damping—as repeatable as possible,

we suspend the structure using surgical tubing to approximate free–free boundary conditions.
Next, we use an impact hammer [15] to provide impulsive excitations to the suspended structure at
the position shown in Fig. 8. The response is measured by a three-axis accelerometer [15] located
close to the point of excitation and the force-to-acceleration transfer function is computed using a
HP35670A dynamic signal analyzer over 10 averages. Next, we use standard modal-curve-fitting
software such as Star Modal [16] to extract the values of natural frequency and loss factor of the
first torsional mode of the structure from the measured force-to-acceleration frequency response
curve. In all the experiments, the measurements of frequency and loss factor are found to be
repeatable to within 0:25 Hz and 0.0005, respectively. Prior to application of the constrained
viscoelastic layers, we thus measure the frequency and loss factor of the first torsional mode to be
186:3 Hz and 10	4; respectively.
Next, we employ Bostik 7132 two-part adhesive [17] to bond a 0:38 mm thick layer of layer of

EAR C-1002 material [18] followed by a 3:1 mm thick bar of steel to each face of the central tube
to form constrained viscoelastic layers as shown in Fig. 9.
The stiffness and loss factor of the C-1002 are available from the manufacturer’s data sheets

[18] and in some references [14], but we have found that the effective complex stiffness of the
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Fig. 8. Sketch of the welded steel frame used in the experiments.
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viscoelastic layer varies somewhat from lot to lot and with the adhesive used, so we detail in the
Appendix a set of measurements in which we determine the complex shear stiffness of the
viscoelastic material at various frequencies and temperatures. By interpolating among these
measurements, we obtain the material properties shown in the first three columns of Table 1.
The structure is initially cooled to a temperature of approximately 7�C; and then brought

slowly up to room temperature over the course of four hours. At each temperature shown in
Table 1, we measure the force-to-acceleration frequency response, and then determine the natural
frequencies and damping as described in the foregoing paragraphs. These results are reported in
the last three columns of Table 1.

3.1. Theoretical predictions

As mentioned in the previous section, the first torsional mode of vibration of the test structure
can be modelled as pure torsion of the middle beam and nearly rigid rotation of the end beams.
Neglecting the inertia of the middle beam, we write the natural frequency fn of the first torsional
mode as

fn ¼
1

2p

ffiffiffiffiffiffiffi
2kt

J

r
; ð55Þ
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Fig. 9. Cross-section of the connecting tube with constrained viscoelastic layers.

Table 1

Material properties, predicted resonant frequency and damping, and measured resonant frequency and damping under

varying temperature

Material properties Predicted Measured

T ð�CÞ Gv ðMpaÞ Zv f ðHzÞ Z f ðHzÞ Z

7.8 11.0 0.83 187.0 0.0248 189.5 0.0234

11.1 9.6 0.83 186.7 0.0222 189.0 0.0212

12.8 8.0 0.85 186.2 0.0196 188.5 0.0187

15.0 6.8 0.85 185.8 0.0171 188.2 0.0174

17.2 5.0 0.86 185.3 0.0132 187.4 0.0126

19.4 4.0 0.87 185.0 0.0109 187.1 0.0103

21.7 3.3 0.89 184.8 0.0093 186.8 0.0089

23.9 2.3 0.90 184.5 0.0067 186.3 0.0066
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where kt is the torsional stiffness of the middle beam and J is the moment of inertia of the end
beams. By substituting the value of the moment of inertia J ¼ 0:44 kg m2 for the end beams and
the torsional stiffness kt ¼ 293 kN m for the undamped middle beam (obtained using the well-
known formula for the torsional stiffness of a thin-walled tube) in the above equation, we
calculate the natural frequency fn of the undamped structure as 183:8 Hz: We find that our
prediction of the natural frequency is within 1.3% of the measured value.
Next we compute the natural frequencies and loss factors for the damped tube at various

temperatures using the expression for the complex stiffness given in Eq. (52). In order to do so, we
use Eq. (37) to determine that the stiffness parameter YE1

3
: For each value of the viscoelastic

material properties, we obtain the shear parameter gt from Eq. (36). The loss factor and
normalized torsional stiffness per unit length are then computed from Eq. (52) and used to
produce the results shown in Table 1. We find that the predicted results for the natural frequency
and loss factor are within 1.2% and 8%, respectively, of the measured values. In Fig. 10, we
compare the measured values of loss factor and stiffness to the theoretical results generated by
holding the loss factor of the viscoelastic material at a constant value of 0.85. We find that the
predicted results are in close agreement with the measured ones.

4. Discussion

We have seen that the complex stiffness of such a tube in torsion depends on two quantities for
each constrained viscoelastic layer: one parameter of the generic form Y ¼ ðkN 	 k0Þ=kN; which
is a measure of the increase in stiffness that could be obtained by rigidly bonding the constraining
layer to the tube wall, and a second parameter gtpðG2=t2Þ

1=2 which is a measure of how strongly
the viscoelastic layer couples the constraining layer to the tube wall. As in the case of constrained-
layer damping of bending vibration, the highest damping is obtained by maximizing Y and
holding gt at an intermediate magnitude. For a given Y ; the best value for gt for a circular
or square tube can be determined from Fig. 4. (For other geometries, use the theory given in
Section 2.2.)
We often wish to design a damping treatment which damps both the torsional and bending

vibration of a beam or a frame. Bending vibration of a thin-walled square tube of width 2h with
constraining layers (of the same stiffness as the tube) mounted on all four faces is characterized by
a geometric parameter YbE3t3=4t1 and a shear parameter

gbE
G2c

2
e

t2t1E1
¼

gtce

h

� �2
G1

E1

� �
t3

t1 þ t3
; ð56Þ

where ce is the effective length of bending vibration (e.g. [19,20]). For the experiment discussed in
this paper, we find that c2e=h2Egb=g2t : The loss factor in bending will be optimized when gb is
between 0.1 and 1.0. But according to Fig. 4, the loss factor in torsion is highest when gt is
between unity and four. Thus it is difficult to obtain high damping in both torsion and bending if
ce is much larger than h; as it would have to be for low-order modes of a slender beam. This
suggests that segmenting the constraining layer (in order to make ce small) will allow us to
optimize for both bending and torsion, but the model developed in this paper is not valid for
torsion of such short constraining layers. Demoret [11] shows that slender constraining layers
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Fig. 10. Comparison of predicted and measured resonant frequency and loss factor for the experiment shown in Fig. 8.
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Fig. 11. (a) Shear modulus and (b) loss factor of the core material versus frequency at various temperatures:

7:8�C ð�Þ; 12:2�C ðrÞ; 14:4�C ð�Þ; 16:7�C ð&Þ; 18:9�C ðþÞ; 21:1�C ð3Þ; 22:8�C ðBÞ; 25:0�C ðWÞ:
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wrapped helically around a circular tube can produce high damping in both torsion and bending.
This has the effect of aligning the long dimension of the constraining layer with the principal
stresses in the tube wall under torsion while aligning its short dimension with principal stresses in
the tube wall under bending.

5. Conclusions and future work

In this paper, we have developed a model for uniform torsion of closed, thin-walled tubes with
constrained viscoelastic layers and provided a framework for determination of their complex
stiffness per unit length. We have found that the stress distribution and hence the complex
stiffness in either case can be modelled with some fidelity in closed form, and therefore simple
formulae can be used to optimize the damping of torsional vibration.
In our analysis, we have ignored the inertia effects and concentrated on determining the

complex stiffness under uniform torsion. If one is faced with a problem with distributed loading or
significant rotary inertia, the complex stiffness derived in this paper can be used to formulate a
distributed-parameter model, provided that the characteristic length in the longitudinal direction
is much larger than the cross-section.
We have restricted our attention to cross-sections where the wall-forms a single closed loop in

the xy plane. But the modelling assumptions—and indeed, the equations governing the warping
deflections—can be applied without modification to multi-cell tubes, though satisfying the
matching conditions becomes somewhat more tedious.
In keeping with the classical Saint-Venant model of torsion, we have ignored all end effects, but

because the structures we are concerned with in machine design are not always slender, it would be
useful to develop some estimates of their importance. As we have seen, the warping deflections
play a key role in damping the torsional vibration of elastic–viscoelastic beams, so restraining the
ends of such beams from warping can have a major impact on their damping properties. It is also
possible for an uneven stress distribution at the point of loading of an elastic–viscoelastic beam to
cause its cross-section to deform within its own plane. To date, this effect has been studied only in
beams with axially symmetric sections [3,4]. Moreover, as mentioned in Section 4, in many cases
the design of a tube for high damping in both bending and torsion will require that the
constraining layer be cut into relatively short segments. To design such dampers, the model
presented in this paper must be modified to account for non-uniform torsion.

Appendix. Identification of the properties of the viscoelastic core

In this experiment, we measure the bending vibration of a symmetric sandwich beam in order to
identify the properties of the viscoelastic core used in the torsional damping experiment described
in Section 3. A three-layer sandwich beam consisting of aluminum elastic layers ð914� 51�
6:3 mm3Þ and a layer of EAR C-1002 viscoelastic material (0:76 mm thick) was assembled using
Bostik 7132 adhesive and suspended using light chords to approximate free–free boundary
conditions. The shear modulus G2 and loss factor Z2 of the viscoelastic material (at a frequency
and temperature) were obtained from the resonant frequencies and loss factors of the first several
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modes of the sandwich beam using results given by Nashif et al. [14]. The properties of the core
material were thus obtained as functions of frequency and temperature and plotted in Fig. 11.

References

[1] S.P. Timoshenko, J.N. Goodier, Theory of elasticity, 3rd Edition, McGraw-Hill, New York, 1970.

[2] C.P. Kollbrunner, K. Basler, Torsion in Structures, Springer, New York, 1969.

[3] M.P. Chandrasekharan, A. Ghosh, Damping characteristics of elastic–viscoelastic composite shafts, Journal of

Sound and Vibration 37 (1) (1974) 1–15.

[4] R.C. Batra, J.-H. Yu, Analysis of damping in finite shearing and torsional deformation, in: T.T. Hyde (Ed.), Smart

Structures and Materials: Damping and Isolation, Newport Beach, CA, SPIE, Vol. 3969, 2000, pp. 86–98.

[5] N. Nandakishore, A. Ghosh, Damping characteristics of elastic–viscoelastic composite curved bars and helical

springs, Journal of Sound and Vibration 43 (4) (1975) 621–632.

[6] A.F. Johnson, A. Woolf, Dynamic torsion of a two-layer viscoelastic beam, Journal of Sound and Vibration 48 (2)

(1976) 251–263.

[7] I.S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.

[8] H. Dewa, Torsional stress analysis and vibration damping of three-layered rods, JSME International Journal 33 (2)

(1989) 152–159.

[9] T. Nouri-Baranger, P. Trompette, S. Shakhesi, Torsional vibrations of laminated beams: comparison of

models, in: Proceedings of the ASME Design Engineering Technical Conferences, Vol. 7B, Las Vegas, NV, 1999,

pp. 3113–3120.

[10] K.L. Napolitano, J.B. Kosmatka, Co-cured extension-twist coupled damped composite strut, Journal of Composite

Materials 32 (21) (1998) 1914–1932.

[11] K.B. Demoret, The barberpole: constrained-layer damping for bending and torsion, in: C.D. Johnson (Ed.),

Passive Damping, San Diego, CA, SPIE, Vol. 2445, 1995, pp. 350–361.

[12] S.H. Crandall, The hysteretic damping model in vibration theory, Journal of Mechanical Engineering Science 25

(1991) 23–28.

[13] D.J. Mead, Passive Vibration Control, Wiley, Sussex, 1999.

[14] A.D. Nashif, D.I.G. Jones, J.P. Henderson, Vibration Damping, Wiley, New York, 1985.

[15] Shock and Vibration Sensors Catalog, PCB Piezotronics, Depew, NY, 1999.

[16] The STAR System Reference Manual, Spectral Dynamics, Inc., San Jose, CA, 1998.

[17] Adhesive Data Sheet, Bostik Chemical Group, Middleton, MA, 1983.

[18] EAR Technical Data Sheet, E-A-R Speciality Composites, Indianapolis, IN.

[19] D.J. Mead, S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary

conditions, Journal of Sound and Vibration 10 (2) (1969) 163–175.

[20] S.A. Nayfeh, Design and Application of Damped Machine Elements, Ph.D. Thesis, Massachusetts Institute of

Technology, Cambridge, MA, 1998.

ARTICLE IN PRESS

S.A. Nayfeh, K.K. Varanasi / Journal of Sound and Vibration 278 (2004) 825–846846


	A model for the damping of torsional vibration in thin-walled tubes with constrained viscoelastic layers
	Introduction
	Modelling and analysis
	Modelling assumptions
	Formulation
	Circular tube with a constrained viscoelastic layer
	Warping displacements
	Complex stiffness

	Circular tube with multiple constrained viscoelastic layers
	Rectangular tubes
	Warping displacements
	Torsional stiffness


	Experiment
	Theoretical predictions

	Discussion
	Conclusions and future work
	Identification of the properties of the viscoelastic core
	References


